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IMPACT ON A COMPRESSIBLE

By 1. T. Egorov

FLUID*

Upon impact of a solid body on the plane surface of a fluid, there
occurs on the wetted surface of the body au abrupt pressure rise which
propagates into both media with the speed of sound.

Below, we assume the case where the speed of propagation of sound
in the body which fsll.lson the surface of the fluid may be regsxded as
infinitely large in ccxnparisonwith the speed of propagation of sound
in the fluid; that is, we shaJl assume that the falling body is abso-
lutely rigid. In this case, the entire relative speed of the motion
which takes place at the beginning of the impact is absorkd by the fluid.
The hydrodynamic pressures arising thereby are propagated from the con-
tact surface within the fluid with the speed of sound in the form of
cunpression and expsmi.on waves and are gradually dsmped. After this,
they sre dispersed like impact pressures, reach ever lsrger regions of
the fluid remote from the body and becane equsl to zero; in the fluid
there remain hydrodynamic pressures corresponding to the motion of the
body after the impact (ref. 1).

Neglecting the forces of viscosity and taking into account, furtl?er-
more, that the motion of the fluid begins from a state of rest, according
to Thomson’s theorem, we msy consider the motion of em idesl canpressible
fluid in the process of tipact to be potential.

We exsmine the case of impact upon the surface of a compressible
fluid of a flat plate of infinite extent or of a body, the immersed part
of the surface of which may be called approximately flat. In this report
we discuss the fiIXt phase of ths impact pressure on the surface of a
fluid, prior to the appearance of a cavity, since at this stage the
hydrodynamic pressures reach their maximum vslues. Observations, after
the fall of the bodies on the surface of the fluid, show that the free
surface of the fluid at this stage is almost completely at rest if one
does not take into account the smsll rise in the neighborhood of the
boundaries of the impact surface.

1. Let us consider the motion of a fluid in the coordinate sys-
tem Oxy, rigidly connected with the solid body (fig. 1). ~ the
selected coordinate system, we have as the potential of the velocity of

*nUdsr O SZhh12EILUiUZhidk06t.“ Prikladnaia Matematika i Mekhanika.
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2 NACA TM 1413

the motion q -in the case of the two-dimensionalproblem - the fol-
lowing linearized equation (ref. 2):

Here, c is the speed of sound. The boundary
considered will be, on the free surface of the

P=o

on the surface of the plate,

for x>a,

for Hx <a,

(1.1)

.-
conditions in the case
fluid,

Y=o (1.2)

Y=o (1.3)

To the conditions required for a uniqu determination of the solu-
tion, we add yet another, the condition at infinity. Let us use the
principle of radiation and express the condition that it is impossible
to propagate disturbances frm infinity inside the flow; in ot~r words,
the waves arising frcm the impact dissipate at infinity (ref. 2):

We

()a~ iq =olim~-+
Zk #yP Ir+ w

shall .sJ.sointroduce the station~ system

= constant (1.4)

of coordinates Olxlyl.

We shall place the axis Olxl on the free

the fluid.

At the initial instant of the impact,
detemdned by the conditions

Y~ =0 Y1 ‘ =V

surface; the axis ~yl inside

the motion of the plate is

for t=O (1.5)

2. We may continue the function q(x)y,t) to the upper half plane
ead obtain the function ~(x,y,t), which is analytic in the entire
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plane with the exception of the cut lx ~~ a, y = O whereby
q(x,y,t) = -q(x,-y,t).

We shall seek the partial integral of equation (1) in the form

q(%y, t) =~(x,y)e-Pt (2.1)

Substituting expression (2.1) into equation (1.1), we obtain

i32* -_$J.o& ~2 (2.2)
dx2 ** C2

Assuming in this eqmtion x = axl, y = ayl, we can bring it into

the form

(2.3)

Here, and in what follows, the subscript 1 for the variables xl

and yl is omitted.

The function $(x,y) must also satisfy the boundary conditions

*o ti=a~= forlxl>l,y=o \ for Ixl<l,y=o
C&

r.

and

lim

(2.4)

also the conditions of the principle of radiation

r(
dq

)
—+ivl# =0

r dr
liml@+l < Constant for r = x*+y2+ m

(2.5)

We introduce the elliptical coordinates ~ and T (fig. 2) with
the aid of the equalities

x= cosh ~ COS l’j

This corresponds to the conformal
plane z = x+ iy into the plane
in equations (2.6), there follows

Y =Sinhgsinq (2.6)

transformation z = cosh ~ of the
g=g+iq. From the relationships

.
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X2 ~2
—+—= cos2~ + sin2rj= 1
cosh2~ sinh2~

(2.7)—
X2 ~2

—. — = cosh2~ = &h2~ = ~
Cospq sin2~

To the lines E = Constant in the ~-plane, there corresponds a
family of confocal ellipses in the z-plane and to the lines q = Constant
there correspond a family of confocal hyperbolas, orthogonal to the
family of ellipses. It is easy to see that the region of interest to
us, Ix /<1, represents the degenerated ellipse ~ = O, lq~fi. To
the region of the coordinate axis x > 1, there corresponds t e degen-
erated hyperbola ~ = 0, ~ > 0 and to x< -1, the degenerated hyper-
bola q = h, ig>o.

We may transform equation (2.3) after substitution of equations (2.6),
with the aid of La&’s relationship (ref. 5)

:+;=(-+f) $r

~

(2.8)
8

into the form

dp~+ d%
—— + v2(cosh2~ - COS2~)~ = O (2.9)
qp L+

Assuming its solution in the form ~(~,q) =F(~)G(q), we obtain, after
substitution of equation (2.9) for the functions F and G, the ema-.
tions of Mathieu -

d2G
—+(a- 26* COS .2?_I)G= O
dq2

There

e*=&2 ex = -e e
a2p2

=—
4C2

.-

d2F—. (a - 2e* &h 2g)F = O
d~2 -

(2.10)

----

(cc is a Constant) (2.11)

8—
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As a result of the fact that a may assume any value, it is
in order to made the solution unique - that the function

ti~ss%the z-plsme should be periodic, with the period 2JC. This
condition defines the multiplicity of eigenvalues CL2Wl(0*) where

n= 0,1, 2,.... The corresponding family of fundamental functions
forms a complete orthogonal system.

The function F(g) must be expressed through the modified Mathieu
functions which satisfy the principle of radiation. 111accordance with
what has been said above, we shall seek the potential ~(~,?l) in the
form of an expansion in odd Mathieu functions of odd index

(2.12)

Here, se~+l(q,-e) is an odd periodic Mathieu function which is

the solution of the first kind of the first eqution of (2.10) and is
eqmessed through trigonometric functions in the form of the series

se2M1( 7-j, -e) s (-1) n I (2.13)rn (-l)rA~~ sin(2r + l)v

r=o

where *2n+l~+1, the expansion coefficients, are functions of 0. The

function Ne
(1)

( -0) constitutes the combined Mathieu function,2n+l 5‘
expressed through the product of the Bessel functions of imaginary
argument in the form of the following series:

(2.14)

Here,

.
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V2 = keE

ka=e

ce2Wl(g, e) is the odd periodic Mathieu function, Im(vl) is the Bessel

function of imaginary argument, and &(v2] is a Macdonald function.

The function Nej~l(g, -6) has the following asymptotic

representation:

# e-v

21H-1“ “21’1+1* ‘-
(2.15)

where v = 2k cosh ~, whence it i.s evident that for ~ ~ ~ the fuc-
tion (2.15) tends monotonica~ tonrd zero. Hence, it follows -d-
iately that the enression we derived for the ~otential (2.12) satisfies
the principle of r~diation.

The function of the potential
condition (2.4) since, for q = O

is transformed into zero.

For determining the arbitrary

the second boundary condition (eq.

.—

(2.1-2) SatiSfieS the first boudary
and TI= *ti,the function se2M1(n$-e)

integration constant, a2W1, we use

(2.4)) which. in the elliptical coor-
dinate system, is &itten in the form

. —

d~

~=avsin~
for ]q~<fi,E=O (2.16)

Subjecting the expression of the potential (2.-&) to the condition
(2.16), we obtain

Here

(1) ‘(o,-9)se2n+l
‘32n+lNe~l (n,-el (Iv I< m) (2.17)

(2.18) .

.

.
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We multiply the equation obtained by se~Wl( ~>~ )dqy integrate from

-II to

f

K
av

-3t

H and find

w

x (1) ‘ J
Yt

se2n+l(~,-9)sin q dq = awlNe~l(O, -Q) seM12( V>-Q)dv

n== 4

on

In
Mathieu

the basis of the orthogonality

(2.19)

of the Mathieu functions

conformity with the second condition of normalization of the
functions (ref. 4),

Substituting the values of integrals found into equation (2.1.2)and
solving it with respect to a2W1, we obtain

.

Substituting,

2*1

a2*~=(-l)n ‘1, a~ -. (2.20)

Ne~~l(O, -EI)

in turn, eqution (2.20) into equation (2.12), we find
.

m (1)

I
Ne2n+l(~$-e) S=2H1(7) ‘)

W(E,d = av ( -l)nA12M1 t (2.21)

n=O ‘1) (o,-e) -‘e2n+l

Taking into account formula (2.1), we introduce the velocity potential
of the motion of the fluid considered in the form
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The expression (2.22) is a partial integral of the wave equa-
tion (1.1) which satisfies the initial and boundary conditions that
we set up.

3. The data obtained regarding the flow of the fluid enable us to
turn to the determination of the hydrodynamic forces. For this purpose,
we use Lagrange’s integral. Neglecting the weight and the squares of
the ~gnitudes of the absolute velocity of the fluid, we can find the
overall value of the hydrodynamic forces per unit width of the plate.
We inte@?ate the pressure p - PO = -pOd(p/dt along the length of the
plate and obtain —

R* . poyra2

Formda (3.2) iS

(1)mNe2w1(0,-f3)

I ,1,,(0 JP+’)2$(=)
n=ONe2n+l ‘-

(3.2)

derived for the case of a plate moving in an infi-
nite fluid. at according to the principle of s-fietry, the values CP
and dq@t above and below the axis of the p~te are equal in magnitude
and opposite in sign. Hence, it follows that the force acting on the
p-te upon impact on the free surface of-the fluid is equal to half the
force acting on the plate in unbounded flow of the fluid:

For simplificationof the

co

Le(e) =
E
n=O

further notation we -shallwrite

(u (0,-6) *12Ne
213+1

()Ne(l)’ ‘1
*wl(o, -e)

(3.4)

The diagram of the function Le(e) is presented in figure 3. Let
us note that

lim Le(e) = -UJ for f3+0 Mm Le(e) =0 for e+m

.
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Thereby, in the first limiting case for 0 ~ O (which corresponds
transition to an incompressiblefluid c = m), the function Le(f3)
like k-2.

9

to a
+Ca

Csrrying out the differentiation in formula (3.3) snd substituting
equation (3.4), we obtain the following expression for determining the
force of *he impact:

R= -~ p@a2~ Le(e)y’
(Y’ )= ve-~t (3.5)

Here, y’ is.the speed of motion of the plske during the process of ~ct,

In order to determine the parameter p, we stistitute equations (3.5)
into the equation of motion of the plate which, in the case of weightless
impact, has the form my” . -R. As a result, we obtain the transcendental
equa.tion .—

m=-— ~ p~a%e(e) (3.6)

It is not difficult to determine from this eq~tion, for the given quan-
tities m, a, and Po, making use of the diagran of the function Le(e)
(fig. 3), the value of e and, consequently, the value of the psmameter
B- (See (2.11).) ~tig into accomt eqpation (3.6)+we obtain the
expression for the force R in the form: R =m~ve-~ ; we jntegrate
this expression and obtain

J

t
J= R dt (=nrvl-e -pt)

(3.7)
o

This relationship permits us to determine the momentum of the fluid
for any instant of time during the first phase of the impact. Using
formula (3.5), we can also determine the kinetic energy of the pla,te.

Figure 4 shows T = T(t), the variation with time of the kinetic
energy of the plate (m = 100 kg sec2 IIL-l,a = 1.10 m, v = 7.0 m see-l)
upon impact on water (c = 1,485 m see-l, P. = 102 kg sec2 m-4); on

ethyl alcohol (c = 1,170 m see-l, PO = 79 kg sec2 m-k); and on pentane

(c = 800 m see-l, pO = 64 kg sec2 m-4). Figure 5 shows for these same
cases the diagram of the variation of the momentum of the plate during
the process of impact.

!lranslatedby Mary L. M&hler
National Advisory Committee
for Aeronautics
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